Activism
About Us
Resources
Mind Psyche Spirit
The Third Pole
Videos
Deep Ecology
Eco Buddhism

SOLUTIONS

Game Changers

The Coming Solar Electricity Transformation

by John Farrell

sf1990.jpg


Solar cells are unusual
They were actually cost-competitive from the get-go. From the Apollo space program to highway signs to lighting for buoys, solar could replace highly expensive power from batteries or other sources and eliminate the need for the construction of electric distribution lines.

When the Institute for Local Self-Reliance was founded in 1974, the first factory producing solar cells for terrestrial applications had just opened in Gaithersburg, Maryland. The cost of solar power was over $3.00 per kilowatt-hour (kWh), com- pared to $0.03 per kWh for grid electricity. The output from that factory the first year was sufficient to power only a few dozen homes.

By the late 1980s, the price of solar was low enough that solar cells were finding their way to second homes and remote cabins off the grid. In 1990, the total installed capacity of solar was 200 megawatts (worldwide, with about 25% in the U.S.), sufficient to power 4,000 homes. During the ensuing decade, federal and later state incentives for solar ushered in the era of grid-connected solar. By 1999, grid connected solar projects exceeded non-grid applications.

By 2000, sufficient solar cells were installed to power 135,000 homes (with just over 20% in the U.S). The cost of solar was $0.50 per kWh, equivalent to an installed cost of approximately $10 per Watt. Since 2000, solar electricity production has grown exponentially. The annual globally installed solar capacity first exceeded 1 gigawatt (GW = 1,000 MW) in 2002.

Cost of Residential Solar v. U.S. Residential Retail Electricity Price
By the end of 2010, installed solar capacity in the U.S. alone exceeded 2.5 GW (sufficient to power 400,000 homes) and global capacity was over 40 GW, sufficient to power 8 million homes. Annual solar module production exceeded 30 GW worldwide: that's equivalent to about 30 nuclear reactors.

As production has increased the cost of solar has fallen. Since 2006, the cost of solar has dropped by 58% – 10% per year. Grid connected solar is on the verge of becoming competitive – without incentives – with conventional electricity.

In 1974, solar electricity cost more than 100 times the residential retail electricity rate, today the differential is 2 times or less in many communities.

A Grid with Solar Parity
The policy and on-the-ground implications of “solar grid parity” are enormous. Even though solar still generates less than one-tenth of 1 percent of the nation’s electricity, public officials, towns and businesses and households will soon have a newly cost-competitive and widespread energy source to develop their own power supply. Locally produced electricity will offer an unprecedented opportunity to connect electricity production with local jobs and economic development.

The opportunity of solar grid parity will also threaten the fundamental nature of a 20th century electricity system. Utilities will have to rethink their role in the electricity network when electricity can be generated by anyone and owned by anyone. No longer will the paradigm of centralized power generation, ownership and distribution make sense when electricity can be economically produced at or near most homes and businesses. Even the concept of backing up solar power is poised to change, as electric vehicles have begun to enter garages and driveways and parking lots, adding a potentially vast number of tiny backup plants and storage systems that will have to be integrated into the grid system.

The nearness of solar grid parity brings urgency to the discussion of electricity policy, from incentives to grid design. Well before any new fossil fuel power plants have passed their infancy, electricity from solar will be cheaper. It means that policies that continue to subsidize a centralized grid and its attendant infrastructure may cost ratepayers for decades. It means that citizens and their elected leaders will have to carefully consider the policies that guide investment in the electricity system.

America is now a nation on the verge of widespread expansion of decentralized electricity generation and on the cusp of a new electricity system that enables more of us to produce the electricity that we consume. It is already possible to identify the first American cities where solar will be competitive without incentives, and to estimate the amount of competitive solar that can be generated over the next decade. What are the implications of this massive introduction of solar? It is now urgent to craft a public policy that will support the transition to solar power while maintaining a balanced and reliable grid. We have the opportunity to redirect solar incentives – like the 30% tax credit – toward new methods of accelerating solar development that can continue to drive down the cost of solar electricity in ways that fundamentally change our electricity system for the better.


♦ John Farrell is a senior researcher with the Institute for Local Self-Reliance and directs its work on democratic energy.  He is best known for his vivid illustrations of the economic and environmental benefits of local ownership of decentralized renewable energy.





Number of unique visitors
Free Counters from SimpleCount.com
Average number of hits in 2011: 5830 per day
Free Web Counters